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n-dimensional crystallographic point group in Gl(n, Z) 

Frank Wijnands 
Institute for Theoretical Physics, Univenity of Nijmegen, 6525 ED Nijmegen, The Nether- 
lands 

Received 30 April 1991, in final form 11 July 1991 

AbstrscL A new method far finding generators for the normalizcr 01 an n-dimensional 
crystallographic (arithmetic) point group is described. Fin1 a set of generators lor the 
centralizer is determined, whereafter the completeness 01 the found set is checked. 
After evaluating all inner autamorphisms, representatives of Ihe outcr automqrphisms, 
if existent, are determined. A complete generating set for the normalizer of some p i n t  
groups for n = 5 , 6  is determined with use of an algorithm, based upon this method. 

1. Introduction 

As is well known, the normalizer N (  K) 

N ( K ) =  { m E G l ( n , Z ) l m k m - ' ~ l i V k ~ l i }  (1) 

of a finite group ItT c Gl(n,Z) (then li is called a finite unimodular group, crystal- 
lographic point group or  arithmetic point group), is finitely generatcd (Siege1 1943). 
The problem is to have a procedure to find a complete set of gencrators for the 
normalizer, given a generating set for the point group. The normalizcr of a point 
group is of importance for the determination of space groups (Brown 1969, Janssen 
et al 1969, Fast and Janssen 1971). 

For n = 1,2,3 all finite subgroups of Gl(n, Z) and their normalizcr have been well 
known for a long time. For n = 4, a complete list of finite subgroups of Gl(n,  Z) and 
their normalizer was given by Brown et a1 (1973, 1978). For n = 5 all maximal finite 
subgroups of GI(n,iZ) have been determined by Ryskov (1972a,b) and Biilow (1973) 
and all maximal finite absolutely irreducible subgroups of GI( n , Z )  were computed 
up to Z-equivalence by Plesken and Pohst for n = 5,7 (1977a) and for n = 6 (1977b). 
Brown et a1 (1973) described methods to find a generating set for the normalizer, 
making use of the specific structure of the point group (like isomorphism class). The 
method described in this paper is intended to determine a generating set for the 
normalizer without knowledge about the structure of the point group. I t  is suitable 
for any point group for arbitrary n, with its generators as input. 

In section 2 the achicvcmcnt of a set of 
generators is described due to the coset decomposition of the normalizcr WRT the 
centralizer and due to the coset decomposition of a subgroup of the automorphism 
group of the point group WRT its inner automorphisms. Section 3 contains a ncw 
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The paper is organized as follow. 
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method to find a generating set for a matrix group, which will he applied to the 
case of a matrix group being the centralizer of,a point group. Thc procedure to 
check whether the found set was complete, is outlined in section 4. How one finds 
representatives of the cosets of the normalizer WRT the centralizer, is discussed in 
section S. An algorithm based upon the methods described in sections 3,4,5 has 
been developed in order to determine a generating set for the normalizer of a point 
group. A scheme of the different steps in the algorithm follows in section 6. Results 
for some point groups for n = 5 and n = 6 are presented in section 7. 

2. Organization of generators due to coset decomposition of the normalizer 

Consider an arithmetic point group IC c Gl(n, Z). The centralizer C(  Ii) 
C ( K ) = { c E G l ( n , ~ ) l c k = k c V k ~ I ( )  

is an invariant subgroup of N (  A-): 

C ( K )  9 N ( K ) .  

It is possible to decompose N (  li) in cosets WRT C(  A-): 
P 

N ( K )  = U nic(Ii-) 
i= l  

where ni corresponds to some automorphism pi  : IC + K, defined by: 

P i ( k )  = nikny' 

I ( K )  5 A ( K )  C A u t ( K )  

Vk E K 
(n, = I , )  . Then 

( 5 )  
where A ( K )  E {p,, . . . ,pp} ( p  = IA(K)I) and I(K) is the group of inner auto- 
morphisms of K I ( K )  = {ei}, where Oi : K -+ K is defined by : O i ( k )  = ailcay' 
for some ai  E K .  Since the order of IC, IICI, is finite, the number of automorphisms 
of I ( ,  IAut(lC)l, is finite (IAut(K)I < IKI!), so p also is finite. Suppose one has 
found e generators for C( K): 

C ( K )  = (Cl, ..., ce)  (6) 
for a point group 

K = (kl, ...) $). (7) 
Due to relation (S) ,  A( li) can be decomposed in cosets WRT I( I<):  

where pi is some representative for the ith coset and (ol z id. Then one has to find 
generators for I ( K ) :  

I( K )  = (el, ..., 0,) (9) 

and coset representatives {pl,. . . , (ot} according to equation (8). In the rest of this 
papel;, ni is a matrix corresponding to the automorphism pi. 
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3. How to find generators for a matrix group 

As is pointed out in section 2, the first step is to determine a set of generators for 
the centralizer C( K). With the method described below, a set of generators for any 
matrix group can be determined. This group can be defined in several ways. One can 
give all group elements, or the group can be determined by some defining relations. 
In the following, the matrix group is considered to be the centralizer of a point group, 
but the method is suitable for any matrix group. 

Suppose one has a generating set of a matrix group. The problem is to find a 
procedure, according to which an arbitrary element can be expressed in terms of the 
generatom hy a finite number of steps. The central idea in the procedure is the 
following. 

Consider some m E G 3 (gl, ...,g,) for a matrix group G. Say m = gtg;'; now 
consider three. different paths m + I,, such that at each step the number of terms 
in a word is decreased by one: 

1. m = g1g4 - g1g2 + 9;' - I,, 
2. m = 9 1 9 4  - 9192 - 91 -+ I, 
3. m = g?g;' -+ g: + g1 -+ I,,. 

Introduce the norm of a matrix in a straightfonvard way: 

2 -1 

2 -1 

n 

N ( m )  = (mij)2. 
;,j=1 

Then 

{gl, ...,g,) ifthereexistsa path 

is a matrix norm (Lancaster 1969). 
Now a matrix m is decided to be expressible as a word in the generating set 

m z m(0) -+ m(1) + ...  - m ( L )  E I , (L E W) 

such that 

vo < i < L3 1 < j  < f q E {-1,l) 
either 

N ( m ( i ) g ! )  < N ( m ( i ) )  * m ( i + 1 )  = m ( i ) g j  
or 

i = L - 1  a n d m ( i ) = g , P .  

The criterion (11) ensures, that by a finite number of steps (< N(n1) )  a matrix 
m is decided to be in a generating set or not. Of course, in principle more paths 
m -+ I,,, satisfying condition ( I l ) ,  are allowed. This makes it possible to achieve 
generator relations, as will become clear in thc description below. The method works 
as follows. 

The generating set {kl, ..., k s ]  of Ii (see relation (7)) forms thc input. Now 
C( IC) can be defined in a way equivalent to definition (2) as follows: 

C ( K ) =  ( c ~ h f , , x , , ( Z ) ~ c k j  = k j c , l < j < s } f l G l ( n , Z ) .  (12) 
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According to definition (12), a matrix m E C( IC) is determined by the s x n2 linear 
equations for its n2 coefficients, by the requirement that the coefficients mij  , 1 < 
i, j < n, are integers and by the requirement for the determinant of m (referred to 
as de t (m))  to be kl. 

First, these s x n2 linear equations are to be solved, resulting in N independent 
parameters, the nz - N other coefficients being 0 or depending linearly on these N 
independent parameters. Now define the following set of matrices: 

CR(K)={c€A4",,(iw)lclc, = k j c , l < j < s ) .  

Then each m E C,(IC) can be mapped upon an N-dimensional vector by the 
bijection F 

F : C,( IC) - iw F ( m )  = (zl, ... , x N )  (13) 

where F assigns to each m E C,( K) the values of its N independent coefficients. 
Now a set of matrices M is constructed, by considering the set: 

M' = {z E ZNIIzjl 6 0, j E {l, . . . , N)} 

for some D E W. Then the set M' corresponds to a set 

M" = { F - ' ( z ) l z  E M ' )  

according to relation (13), and M consists of all matrices m in the set M" satisfying 
the following two conditions: 

1. m,, E Z for m,,-dependent coefficients; 

2. de t (m)  = f l .  

The resulting set of matrices M is put in order with increasing norm. 
The selection of the generators out of the set M is performed as follows. The 

first generator c1 is the first matrix in the set M (with lowest norm) . Now consider 
the second matrix, say m E M. The criterion (11) can be applied with f = 1 in order 
to decide if m E< c1 > . If m e< c1 >, then m becomes the second generator: 
c2 = m, and the third element is treated according to criterion (11) with f = 2; if 
m E< c1 >, then the third member is treated with f = 1, etc. In this way the whole 
set M is examined, ending up with a set of generators and all other members being 
written as words in this generating set according to criterion (11). 

As pointed out before, there can (and in general will) exist more paths m i I,,. 
Suppose for example: 

1. 
2. 

are two possible paths. Then 

m -+ mc;' i c;'mc;' + c;'mc;'c;' = I ,  
m + mc,' -+ c;'mc;' = I ,  

m = c;c3 = clcq j cq = c;'$c, 

is a generator relation. In principle a dependent generating set {cl . . . , c , )  will be 
found, and with help of the generator relations as in the example above, the numbcr 
of independent generators can be decreased. 
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In order to minimize the number of generators, one extra degree of freedom is 
allowed WRT the decision whether a matrix m can be expressed as a word in some 
generating se t  If no path m + I, has been found, the process is carried out for m-* 
instead of m with the same criterion (11). Of course, this inversion is not allowed 
inside a path, since then the number of steps would not be ensured to be finite. The 
set of matrices which do not satisfy criterion (11). but of which the inverses satisfy 
criterion (ll), is denoted by J = {jl,. . . ,ja} for some a E W. 

4. Check of completeness of generating set for C ( K )  

Now all matrices in the set A4 have been shown to be expressible as words in the set 
{cl, . . . ,ee) but it still has to be proved that < cl,. . . , ce >= C( IC). Consider the 
set: 

T = [a E ~ , , , , , ( ~ ) l a k ~  = k j a ,  1 < j < sl \  g j  E 

So T consists of all matrices a E MnX,,(R) commuting with each k E IC, of which 
the norm can not be decreased by left- or rightmultiplication with any generator cj 
or its inverse. 

All j ,  E J are added to the ci of definition (14). This is permitted, since J 
consists of all matrices for which the criterion (11) is satisfied after inversion. 

Analogously to relation (13), the set T C Mnx,,(R), defined in definition (14), 
corresponds to a set T' RN. The set T' is defined by inequalitics for a number 
of homogeneous polynomials of second degree in the N free parameters (because 
of definition (10) and the fact that all dependent coefficients depend linearly on 
the  N free parameters). Since all matrices m E C(K) for which Izil < D ( 
F ( m )  = z E ZN according to relation (13)) have already been evaluated, it holds 
for these m that m 7". The comple:eness of the set 
{cl,. . . , ce) is proved if 

T and the corresponding z 

TnGl (n ,Z)  = {0 ) .  (15) 
Before the proof is outlined, first some useful properties will be dcscribed. Let 
A E LR\{ol. Then 

(16) z E T' o Ax E T' 

because of the fact, that T' is defined by homogeneous polynomials of second degree 
in the N free parameters. Let det (z )  denote det(g), where g corrcsponds to z in 
accordance with relation (13). Then 

det (Az )  = Andet(z)  ( A  E W) (17) 
because the determinant is a homogeneous polynomial of degree n in the N free 
parameters. For this reason it is also true that: 

a a 
OXj axj - d e t ( z  = Azo) = A"-'-det(z = xo) 
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for some z,, E R N ,  X E R,J’ E {l, . . . , N). These three properties are useful for the 
argument of the proof, which is outlined below. 

Consider a hypercube in RN, centred in (0,. . . , 0 )  with edge length 2 E  (E  E W). 
The surface of this cube is divided into hypersquares Si of edge length 1. Every Si 
produces a tube Ti enclosed by 

{ A P I A  > 0, P on the boundary of S i ) .  

Then UTi = RN.  In the following, the analysis is performed per square Si ( i.e. per 
tube Ti ). 

The idea is that an upper bound on (zj 1,l < j < N, for z = (zlr.. . , z N )  with 
det(z) = fl ,  z E Ti, is determined if the condition is satisfied that Si n T’ f IQ). 
Note that, since Si, and therefore also Ti, are defined by inequalities for second 
degree homogeneous polynomials in the N free parameters, there is an exact answer 
to the question whether or not this condition is satislied. If Si n T’ = {O}, then 
Ti n T‘ = {0} due to relation (16), and the next tube is to  be examined. If Si n T’ # 
{0}, it must be determined whether 

{ z  E Til det(z)  = fl} n E N  = { e } .  
First calculate det(z,), where zM is the point in the centre of Si. If det(z,) 
> 0, then one has to calculate a lower bound (referred to as L B  ) for det(z ) for 
z E Si. If det(zM) < 0, then an upper bound, denoted by U B ,  must be calculated. 
In the following, with the bound B is meant L B  or UB.  Tivo methods are used to 
calculate such a bound. 

nomial of degree n; in order to find a bound, choose the most negative ( L B )  or 
positive ( U B )  value of the determinant term by term for z E Ti.  For example, 
suppose 

?vf&~d j .  AS 2:iiadj; poifit& oiii before, the d ~ b i ~ i i i a i i t  5 B ~ G K K ; ~ ~ X X X S  pa$- 

N = 4  det(xl,22,z3,zq)=z:122-x3x4 2 2  

suppose 

Si = { ( 3 , 2 + @ , 1 + 7 , 6 )  E R ~ I O < / ~ , Y , ~  < 1 ) .  

Since det(2,) > 0, a lower bound has to be determined: L B  = 0 x 4 - 4  x 1 = 32. 

Merhod 2. For any 1 < j < N, a d e t ( z ) / a z j  is a homogeneous polynomial of 
degree n - 1. Now the extrema1 partial derivative of the determinant is calculated 
term by term V j  E {l, . . . , N} \ I k l ,  when zk is fixed. For the example mentioncd 
above, lower bounds on the partial derivatives are 

a 
(36,-4,-8)for 

respectively. Now a bound on the determinant is achieved as follows. 
First det(y) is calculated, where y E Si has property yj = m i n ( x j ) , l  < j < N ,  

so y is on the edge of Si. Next, when a lower (upper) bound is sought, and a partial 
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derivative can only be positive (negative), then that partial derivative does not give a 
contribution. So 

For the example mentioned above, L B  = 36 - 0 - 4 - 8 = 24. The values for the 
bounds determined with these two methods, are compared and the highest (LB case) 
or lowest ( U B  case) value for the bound is taken. Suppme LB > 0 ( U B  < 0). In 
UIUC, LU UCLGlllllllG arr uypc, "UULl" U11 LLlC , Z j , , l  * 3 * I " ,  L", " C L ( ; c ,  = 3 1  nllU 

z E Ti, note that: 
_̂a._ -- A-*--.-:..- ~- L _I _ _  *I.̂ I_  , * , : , A, c-- , . L - ,  - I ,  .."A 

lzjl < E 1 < j < N for z E Si. 

Therefore 

where B is the bound, U B  or LB.  Now the two cases E /  "m < D + 1 and 
E/ nm 2 D + 1 have to be distinguished. In  section 3 all m E C ( K )  were 
examined, for which the corresponding Ii;l 6 D(l < j 6 N). So if E / " m  < 
D + 1, then all matrices m E C ( K )  with'corresponding z E T ,  have already been 
examined in section 3. If E /  nm 2 D + 1, then consider the set: 

5 E T n z N I j t E  { I ,  ..., N } [ I ~ , I  2 D I A ~ ~ , I  + , i  < 96 N}. (21) { m 
For all z in this set it is checked whether or not the following four conditions are 
fulfilled: 

1. if z E T' and 

2. de t (z )  = It1 and 

3. m,, E Z for m,, dependent coefficients of ?n = F - ' ( z )  and 

4. mU1 $< c1,. .. ,ce > according to criterion ( l l ) ,  then add m to the set of 
generators. 

If L B  < 0 (or, if an upper bound is to he determined, U B  2 0), then it is 
possible that Izk/ + CO for some z E T' for which de t ( z )  = *l. In that case use a 
refinement atratem, _. which consists of the following. Let 

si i 25, = {2+ E Si}. 

Since. ZSi has edge length 2, it can be divided into 2 ( N - ' )  squares of edge length 1: 
S C  , with 1 < m < 2(N- ' ) ,  the upper index (2) denoting the level of refinement. 
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Every square corresponds to a tube T!,?, and in fact nothing else has been 
done but subdividing the tube Ti.  For each new tube the analysis is restarted in a 
slightly different way than for the first refinement level. First it is checked, whether 
T!,: nT' # {O). If so, det(zM) is calculated, where zM is the point in the centre of 
S C .  Then a lower bound ( if det (zM)  > 0) or an upper bound (if det (zM)  < 0)  
on the determinant is determined. Method 1 is used for that purpme in exactly the 
same way as before. Method 2 works differently if the level of refinement is not 1. 
Use is being made of the fact, that a refinement has taken place. Using equation 
(U) with X = 2, as bound B may be taken: 

with p = 2 denoting the level of refinement, 6 corresponding to the sum term 
in equation (20) for Si (refinement level l), y E S C  has again property yj = 
m i n ( z j ) , l  < j < N. The reason for using this strategy is the following. Suppose 
the determinant surface in RN is relatively flat. 'IIben, after refining: 

B = det(y)  + 2(P-')(n-')6 (22) 

det(y) 
according to equation (17), whereas 

6(det) + 2"-'6(det) 

according to the analysis described above. 
Of course, also at this second refinement level, there can be tubes T:,? with 

L B  < 0 or U B  2 0. Up to some maximum, as many refinements as necessary are 
allowed in order to achieve an exact analysis for each tube 

det (2y) = 2" det (y) 

Ti(,$ ,,..., m. (1 < mj < 2 ( N - ' )  v 1 < j < p )  

where p denotes the refinement level. At each refinement level p # 1, the same 
analysis as for p = 2, is used. 

The outcome of the analysis described above is as follows. 
Suppose there are no tubes for which L B  < 0 (if det(zM) > 0 ) or U B  > 0 (if 

det(z,) < 0) for p = p,,,. Then the found generator set is proved to be complete. 
Suppose there are such tubes. Then consider the set : 

E T(P"") *lm2...-.mp.n.I nzN13t €11, . . . ,N) [ Iz t l>  D l ~ l z , I  

< E x 2(PmaX-'), 1 < q < N} (23) 

{ 
, 

For each z in this set it is checked whether the four conditions below relation (21) 
are satisfied, and if so, then the corresponding m E C( I<-) is added to the generator 
set. 

m E C( IC) ,  Iz, I < E x 2(pm*x-') V j E { 1, . . . , A') 

where z = F ( m )  according to relation (13), and U denotes the number of eventually 
added generators due to the analysis described above (for all point groups tested, the 
author never encountered the situation U # 0 ). In other words, the generator set 
has not been proved to he complete, but each matrix in the subgroup Of C( l<)  
generated by all m E C( li) with coefficients up to some maximal absolute value, has 
been proved to be expressible as word in the found generating set. 

Hence it has been proved that: 

+ m E < c , ,  ..., c,+, > (24) 
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5. Finding representatives for the cosets of N ( K j  WRT C ( K )  

In section 2 it was already pointed out, how N (  K) can be decomposed in cosets 
WFX C( K) (equation (4)). The resulting representatives ( nLlr . .  . , n,} correspond 
to the set automorphisms { (ol, . . . , 'p, 1. This set is the group A( K) from relation 
(5). The ith automorphism 'pi is completely determined once 

' p i ( k j )  = Z I C , Z - ~  z E n i c ( K )  (25) 

is known for all point group generators IC,, . . . , I C B ,  The first consideration is how to 
construct all possible automorphisms of the kind of relation (25). A necessary (but, 
as will be shown, not sufficient) condition for such an automorphism, say qi, is that 

(26) 

i.e. each generator IC, must satisfy the same characteristic equation and, as a conse- 
quence, have the same eigenvalues, as 'pi(kj) . Therefore all point group dements 
have to be determined, which have the same eigenvalues as the generators. 

Now the characteristic equation, det(k - XI,)  = 0, has to be calculated for each 
k E li. For n b 6, use can be made of the toiiowing iemma. 

Lemma 1.  If n < 6, then the eigenvalues of a point group element k are completely 
determined by: 

1. dct(k), the determinant of the matrix k; 

2. t r ik j ,  tne trace of the matrix 

3. t h e o r d e r m o f k  k " = I , , k j # I , i f j < m ;  

4. if n = 6 and m = 4 or 6, then it must be checked whether X = 1 is an cigenvalue 
of IC. 

Frooj. For given n, aii possiiiie orders m ior a point group eiement k can be 
determined (see e.g. Hiller 1985). For example, for n = 6, the possible orders are 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24 and 30. For given dimension n and 
order m ,  it is easy to classify all possibilities for the set of eigenvalucs. 

det(kj - XI,) = 0 e det('pi(ICj) - XI,) = 0 1 < j < s 

Of course, one could determine the characteristic equation and not use the lemma 
descr<Ded 
of all point group elements), the lemma is useful. 

but in order io gei iiiformaiion a.ooui ihe poiiii group pe i.ne urder 

Let the point group elements having the same eigenvalues as k,, be dcnoted as 

{ d j , 1 ) ,  .. . , d j > a j ) }  1 < j < s .  (27) 
-~ Then the number of homomorphisms of the kind of equation (25) to be considcred, 
is 
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Now consider a,homomorphism: 

k ,  - v ( k j )  = g( j ,mj)  1 < mj < a,  V 1 < j < s. (28) 

In order to be an automorphism, it must hold that: 

<(g(l,mi),...,g(s,m,) >= K (29) 

which is not always the case. As an example, consider: 

. = f = ( [ l  0 1  ,].[:1 -4) 
but 11<1 = 8 whereas IHI = 4. 

Excluding these homomorphisms, which are not automorphisms, representatives 
for the automorphisms have to be determined. According to relation (8), however, it 
is convenient to search first for all inner automorphisms. The set of inner automor- 
phisms is the set {O i } :  

O i ( k i )  = a . k . a r ’  ai  E I( 

for each generator k j .  Since all point group elements are known, all inner auto- 
morphisms can be determined exactly. They form a group, I ( I < ) ,  and I I (K) l  = ?-. 

From now on, once a representative ni is found (see relation (4)), at the same time 
?- representatives are found, according to relation (8). 

For each automorphism vi ,  a corresponding represedtative ni is to be determined. 
As was the case for the centralizer matrices, ni satisfies s x n2 linear equations for 
its coefficients. In order to find a matrix ni E Gl(n,Z), the same procedure as in 
section 3 is used. Say there are P independent coefficients, zlr  . . . , zp, determining 
the coset niC(K). Then all matrices for which 

: I  1 

I 

Iz,I<F V l < j < P  (30) 

are considered, for some F E W. Now suppose no representative can be found. 

parameters, can always be written as: 
The determinant, which is a homogeneous polynomial of degrcc n in the P free 

(31) 
a 

det(z, , .  . . ,zp) = i;(slf, + .. . + s,f,,,) 
with a and b relatively prime, the fj are the polynomial terms zy” . . . and 
sj E Z, 1 < j < P. When the factorization of the determinant in the form (31) gives 
a # *I, then there cannot exist an ni E Gl(n,Z)  satisfying the  linear equations 
defining n;,  since then there are no integer solutions for zj, 1 < j < P, such that 
d e t ( z l , .  . . , z P )  = fl in equation (31). Once this is proved, it is proved for T 

representatives, since the automorphism in question can be combined with all inner 
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automorphisms, giving T automorphisms of which it is proved that they cannot be of 
the form given by relation (25). 

If the determinant in the form (31) gives a = hl, then it has not been proved, 
that there exists no representative for the automorphism considered (for example, by 
increasing the value of F in relation (30), a representative perhaps might have been 
found). This means that it has not been proved that all coset representatives in N (  1') 
WILT C( IC)  have been found, and therefore the completeness of the generator set 
of N (  1') has not been proved. It must be noted, however, that for all point groups 
tested, once representatives could not be found, their non-existence could be proved 
with help of the factorization (31) of the determinant. Hence the coset decomposition 
of N (  K) WRT C( IC) has been exactly tested for all point groups considered (also 
see section 7). 

6. Algorithm scheme 

An algorithm has been developed which is based upon the methods described in 
sections 3,4,5. A generating set of a point group forms the input, the output is 
formed by a generating set of (a subgroup of) the normalizer. The algorithm scheme 
consists of the following steps 

A. Find a generating set for (a subgroup 00 the centralizer C( IC). 

1. Determine independent parameters for C( IC) and the linear equations determin- 
ing the other, dependent coefficients (equation (12)). 

2. Construct a finite subset M of C( IC)  by varying the absolute values of the in- 
dependent parameters between zero and some constant D and by adding the 
corresponding matrix to M if its determinant is equal to +1 and if all n2 coeffi- 
cients have integer values. 

3. Put the elemens of M in order with increasing norm. 
4. The elements of M, starting with the element having lowest norm, are treated as 

follows: 
the first element of M becomes the first generator C,; 
if an element can be expressed as a word in the already found generators, 
c1,. , . , C, for some f E W, according to criterion ( l l ) ,  then the next element 
is treated using the same set of generators; 

if an element cannot be expressed, the criterion (11) is applied to the inverse 
of this element (reason: more freedom in expressing a matrix as a word in 
a set of generators). If the inverse of the element is expressible as a word 
in the generators, then this element has to be storcd in a list (although the 
element can be expressed as a word in the generators, it has to be used in 
the completeness check; see discussion at the end of section 3 and equation 
(14)). Otherwise this element must he added to the set of generators. 

5. 'Ikeating all elements of the set M as in step 4, M can be divided into generators, 
and elements expressible as words in these generators. 
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B. Completeness check. 

6. The next step is to check whether the found set is complete. Suppose N is 
the number of independent parameters determining the centralizer. Then RN is 
divided into tubes Ti, defined in section 4. 

7. For each tube Ti it is checked, whether Ti contains points, for which the norm 
of the corresponding matrix (according to relation (13)) cannot be decreased 
(this can be checked, since it requests solving a finite number of second degree 
inequalities): 
a. if so, calculate an upper bound on the maximal absolute values of the coef- 

ficients for points with det = *1 in this tube (see two methods described 
in section 4). If such an upper bound exists, then check for all points 
z E ZN,z E Ti with maximal absolute values for their coefficients lower than 
the upper bound, whether the corresponding matrix is in C( IC), whether its 
norm cannot he decreased and whether its inverse cannot be expressed as a 
word in the generators according to criterion (11). If these three conditions 
are all satisfied, then this matrix has to be added to the set of generators; 

b. if not, then turn to the next tube. 

8. If all tubes T, satisfy 7b or satisfy 7a such that an upper bound can be determined, 
then a complete generating set for the centralizer has been determined. 

C. Find coset representatives. 

9. The next step is to determine coset representatives for the cosets of the normalizer 
WRT the centralizer. First, all point group elements with the same invariants as 
the generators are determined. 

10. Each combination defines a homomorphism. For each homomorphism it is 
checked whether the images of the generators generate the whole point group. If 
so, this homomorphism is an automorphism. 

11. All inner automorphisms are determined (the group of inner automorphisms, 
I(Ii), is a subgroup of the group described in step 10, the group A ( I i )  (see 
section 2). So once all inner automorphisms are known, the number of coset 
representatives to be determined, is decreased considerably). 

12, For each element of A( l C )  a representative matrix is to be determined following 
the same procedure as in steps 1,2 (so this matrix is determined by, say P,  
independent parameters, and the absolute values of these P paramcters are varied 
between zero and some constant F). 

13. Once one matrix has (not) been found, at the same time II(1i)l matrices have 
(not) been found, according to step 11. 

14. If a representative cannot be found, then try to prove, with help of the expression 
of the determinant in terms of the P independent parameters, that the deter- 
minant cannot be equal to f l ,  when the parameters have integer values. If for 
at least one representative this proof cannot be given, then the algorithm cannot 
guarantee completeness of the determined generating set for the normalizer. 

15. The generating set for (a subgroup of) the normalizer is formed by: 

the generating set for (a subgroup of) the centralizer (step 4); 
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the point group elements for which the corresponding automorphisms generate 
the group of inner automorphisms (one can also simply take the point group 
generators, but if II(IC)I < IK(1, there are also point group elements in 
C ( K ) ;  see step 11); 
the wset representatives according to steps 12, 13. 

7: ReSE!@ 

A computer program, following the algorithm scheme described in section 6, has been 
written in FORTRAN77 and run on a SUN4 computer. The program is to be integrated 
in a software package for the determination of n-dimensional space groups. 

Results for some point groups for n = 5 and n = 6 are given, together with a 
brief discussion about the completeness of the found set. The analysis for the first 
point group is meant as an example of how the algorithm works, and is therefore 
described more extensively. 

Consider a point group, mentioned by Janssen (1990), denoted by 7mm C 
Gl(6,Z). which is in the isomorphism class D,  (111' = 14. li consists of matri- 
ces of order 7,2,1 with determinants 1, -1, 1 respectively) : 

0 0 0 0 0 -1 0 0 0 0 0 1  / T  1 0 0 0 0 - 1  1 To 0 0 0 1 o l \  

c1 = 

I ) ' (32) I ) I  0 0 1 0 0 0  
0 0 0 1 0 0  0 1 0 0 0 - 1  

0 0 1 0 0 - 1  K = (  I 

--1 0 0 0 0 0 -  
0 - 1 0  0 0 0 
0 0 - 1 0  0 0 
0 0 0 - 1 0  0 '  
0 0 0 0 - 1 0  

. a  0 0 0 0 -1- 

(33) 

{ 
0 0 1 0 0 - 1  0 0 - 1 - 1 1 1  

-1 1 0  1 0  -1 0 0 -1 -1 0 1 

- 1 0 0 1 0  1 1  -1 -1 0 0  
_-I. 0 0 0 1 -1  -0  1 0 -1 0 0- 

-1 0 1 0 1 :j ' 1 0  -1 -1 0 0 ' 
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- 0  -1 1 0 -1 1 1 -1 0 0 0 1 -  

1 - 1  0 -1 0 1 
1 0  -1 0 - 1 1 ’  

0 0 1 0 - 1  0 1 -1 0 1 -1 
0 0 1 1 - 1 - 1  0 - 1 1  0 

-1 -1 1 1 
- 1 0 1  0 -1 1 -1 1 

’ 

(34) 

- 0  0 -1 0 1 0 -  
0 0 -1 -1 1 1  
0 0 -1 -1 0 1 
1 0  -1 -1  0 0 
1 1  -1 -1  0 0 

-0 1 0 -1  0 0- 

denoted by { s i ) ,  i = 3 , .  . . ,8, respectively. Now g3,g;l e< c1 > according to 
criterion (ll), so c2 = g3. g4,g;‘ e< clrc2 > , s o  c3 = g4. gs e< c1,c2,c3 > ,hu t  
g ; ’ =  C ; ~ C ; ~ , S O ~ ~  = g s  (seesection3). g6 = c l c z , g 7 =  c1c3. gs e< c1,c2,c3 >, 
but g; - c2 c3 c1, so j ,  = ga . All other matrices in the set M turn out to he 
expressible as words in terms of c l ,  c2,  c3 according to criterion (ll), except for 
two matrices with norm 106, denoted by j3,j4, which can he expressed in terms of 
c1, c2 , c3 only after inversion. 

4. The next step is to prove that the set {c1,c2,c3} is complete. First the set 
T of definition (14) is determined by multiplying an arbitrary a E C ( K )  with all 
g E {cl ,  c2, cg , j l r  j2,j3,j4) and their inverses. This procedure results in eight con- 
straints. The 143 matrices already evaluated, are certainly not in T. Now relation (15) 
has to he proved. The determinant is a sixth degree polynomial in three parameters 
(so N = 3). Then a cube in R3 is constructed with edge length 6 (so E = 3). The 
analysis is done per tube T; corresponding to a square Si,  where Si is of the form: 

1 - -1 -1 

si = ( ( * 3 , ~ ,  + P , Y ~  + Y) E I R ~  I 0 G P ,  < 1) 

or permutations. The maximal number of refinements allowed is put equal to 7 (so 
p,,, = 7). This means that, if the.analysis cannot prove completeness, it can prove 
that all matrices m E C( IC), for which Izj I < 3 x Z6 = 192 are expressible as words 
in the set { c1,. . . , c3+,,}, where U denotes the number of eventually extra generators 
(see relation (24)). It turns out that the analysis for this point group is exact: 

- -1  1 0 0 0 -1 
0 0 1 0 0 - 1  

- 1 1 0 1 0 - 1  
-1 0 1 0  1 - 1  
- 1 0 0 1 0  0 

. -1  0 0 0 1 -1 

C(IC) =< C1’CZ,C3 > 

= ( - I 6 .  

(35) 

5. Now representatives for the coset decomposition of N (  I<)  WRT C( Ii) are to be 
determined. As llCl = 14, the number of inner automorphisms Il(li)l < 14. It 
turns out that II(IC)I = 14, and the group of corresponding point group elements 



Normalizer of n-dimensional point group 5717 

I'(ZC), I ' (K)  E I ( K ) ,  is equal to IC itself. So I ' ( K )  =< lel, k ,  >. With use 
of lemma 1, there are six respectively seven point group elemens having the same 
eigenvalues as le, and k, (see relation (33)). Therefore 42 homomorphisms of the 
kind of relation (25) are possible, all of which are automorphisms, since they all 
satisfy condition (29). According to relation (S), there are three representatives 
nI, n,, n3 to be determined. Now n1 is the representative corresponding with the 
coset n,C(K) = C ( K ) ,  so n1 16. The two remaining representatives are: 

1 1 0 1 0 - 1  O l  
0 1 0  0 0 1 0 0 1 0  [-: 0 1 0 -1 0 1 I (36) n2= I 0 -1 1 1 -1 -1 O I 113'1 -1 0 0 0 1 - 1  ' 

-1 -1 1 1 -1 -1 1 0  0 0 -1 

-1 0 1 0  1 - 1  l o  0 1 0  0 - 1 -  
0 - 1 0 1  0 
0 0 0 1 0 -1- 

This completes the analysis for this point group. The found generating set for the 
normalizer has been proved to be complete: 

N ( K )  =< cl,c~,c3,k1,k2,n2,n, > .  
The running time for this point group was 73.9 seconds 

As a second example, consider the point group: 

(37) 

0 1  0 0 0  0 0 0 0 1  

IC = (1: ; a ] , [ ;  H ; ;I\. (38) 

\lo" 0 i1 ;: ;;I 1;: 0 0 ;; ;;I/ 
Its generators have orders 6 and 2, both have determinant 1. (I<-( = 120 and possible 
orders for point group elements are 6,5,4,3,2,2,1, each number corresponding to a 
particular set of eigenvalues (note that IC contains elements of order 2 with trace -3 
and 1 fnr example (see lemma 1)). There are two independent coefficients, zi zir 
determining each m E C( IC). A set M is constructed by considering 

{zEZ311zj1<3,1 <j<Z} 

It turns out that C(If) =< - I 5  >. 
The algorithm can prove completeness of the found generating set. Now 20, 

respectively 15, point group elements have the same eigenvalues as the generators 
le, and le,. This means that there are 300 homomorphisms of the kind (25). It 
turns out that 60 homomorphisms do not satisfy condition (29), and are therefore not 
automorphisms. There are 120 inner automorphisms, and the corresponding group 
of point group elements is li itself. Due to the coset decomposition of A( li) WRT 
I ( I C ) ,  there are (300 - 60)/120 = 2 representatives to  be determined (the first 
representative is trivial: n1 I s ) .  The other representative, n2, cannot exist in 
G1(5,,?%), since det(n,) = 0, due to relation (25). 

The result is: 

N ( I C ) = < - 1 5 , k l , k ,  > (39) 
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The running time for this point group was 4.4 seconds. 
The third example to be considered is the point group: 

0 1  0 0 0  0 0 0 0 1  
1 0 0  0 0  1 0 0 0 0  

IC=(  i& ; ;1 8 J[; a ; 8 J ) .  
(40) 

Its generators have orders 6 and 5, both have determinant 1. 1fC1 = 1920 and 
possible orders for point group elements are 12, 8, 6, 6, 5, 4, 4, 4, 3, 2, 2, 1, each 
number corresponding to a particular set of eigenvalues.There is one independent 
coefficient, from which it directly follows that 

C ( K )  =< -I5 > . (41) 

Now 320, respectively 384, point group elements have the same eigenvalues as the 
generators k, and !e2. This means that there are 122844 homomorphisms of the kind 
(25). It turns out that 69084 homomorphisms do not satisfy condition (29), and are 
therefore not automorphisms. There are 1920 inner automorphisms, and the corre- 
sponding group of point group elements is I< itself. Due to the coset decomposition 
of A( K) WRT I (  IC), there are (122844 - 69084)/1920 = 28 representatives to be 
determined (the first representative is trivial: n1 15). The 27 other representatives 
must have determinant # f l  due to the relations (25) determined by the defining 
automorphism (and have therefore been proved to be non-existent). The result iS: 

N(IC) =< - 1 5 , k l , k 2  > . (42) 

The running time for this point group was 179.5 minutes. 
The fourth case is meant as an example of a point group for which completeness 

of a generating set for its centralizer cannot be proved by our method. Only the 
centralizer part is treated here. This point group and its normalizer have already 
been treated by Brown el al (1973): the point group is in isomorphism class D, : 

/ y o  -1 0 0 1  r0 1 0 O i \  

C ( K )  has four independent coefficients, x,,x2,x3, x4. The algorithm finds five 
generators, c, ,  c 2 ,  c3 ,  c.,, c5, with cg = c1c2. Then 

I r-1 0 0 0 1  

(44) 
1 0  0 0  1 0 - 1 - 2  

;2 ; ;I.[: R ; ; I ) .  
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Comparison with the results by Brown et a1 (1973) yields that the set {cl, c2,  c3, e,,) 
generates C ( K ) ,  but this cannot be proved by the check procedure of section 4. Thls 
can be seen as follows. 

The determinant of each m E C(IC) in terms of the independent coefficients 
x1’x2,X3,xq is: 

det (z l ,xz ,x3 ,  x4) = xfxi+ 9x;xi+ 6z,x2x3x4. (45) 

det(E,O,O,O) = 0 (E ,0 ,0 ,0)  E T‘ (46) 

Thke for example a hypersurface Si such that (E, O,O, 0) E Si. Now 

using relation (45) and the explicit form of the second degree inequalities defining 
T’ . Then also 

det(2(P-1)E,0,0,0)  = 0 ( 2 ( P - 1 ) E , 0 , 0 , 0 ) ~  T ’ ( p c N )  (47) 

according to equations (17) and (16). This means that evely Ti containing (E, O,O, 0)  
does not have an upper bound on the coefficients zl, x2, z3, x4 on the de t ( z )  = *l 
surface. According to relation (47). however, for each refinement level p E W, tubes 

T i p )  s.ma*...vm, 3 (E>O,O,O) q22,,.,,mp nT‘ # {fll 
will exist, having no upper hound on the coefficients z1,x2, x3,x4 on the de t (z )  = 
fl surface. Therefore the completeness of the found set, given by relation (44), can 
only he proved for the subgroup of C(K) defined in relation (24). 

As a last remark, there are also point groups, for which completeness of the found 
generating set cannot be proved by the procedure described in section 4, although 
inspection of the determinant shows, that the centralizer must he finite. The maximum 
absolute value on the coefficients of C( IC) can then lead to a proof of completeness. 

8. Concluding remarks 

The algorithm described in this paper, for the determination of a generating set for 
the normalizer N (  IC) of an arithmetic point group IC turns out to be powerful (in 
practice). Although completeness of the found set for the centralizer C( Ii) can he 
proved only a posterion’, it turns out that for a number of point groups the proof 
exists. The accuracy of the analysis can he increased significantly, by using less rough 
determinant-bound determining methods (see section 4 ). The method to construct 
generators corresponding to the coset decomposition of N (  li) WRT C( Ii) turns out 
to he exact for all examples mentioned (even for all point groups tested). 

As a last remark about the computer program, consider the hounds given a value 
by the user in an interactive computer session. The values of the hounds related to 
the centralizer (the hounds D below relation (13), E below equation (18) and p,,, 
above relation (23)) should he chosen in accordance with the number of independent 
parameters determining the centralizer. The bigger this number gets, the smaller 
these values should be chosen, in order to get reasonable running times. The value 
of the hound related to the coset decomposition of the normalizer WRT t he  centralizer 
(the hound F in relation (30)), should he chosen in accordance with the  order of the 
point group. 
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